		CBCS SCHEME Instruce of rectan	
USN	1	15	MATDIP41
		Fourth Semester B.E. Degree Examination, July/August 2 Additional Mathematics – II	2022
Tir	ne:	3 hrs. Max.	Marks: 80
	Λ	Note: Answer any FIVE full questions, choosing ONE full question from each	module.
		$\underline{\text{Module-1}}$	17
1	a.	Find the rank of the matrix by elementary row transformations: $A = \begin{bmatrix} 2 & 1 & 3 \\ 2 & 3 & 4 \end{bmatrix}$	4 7 .(05 Marks)
			4
	b.	Solve the following system of equations by Gauss elimination method x + y + z = 9 x - 2y + 3z = 8	
	c.	2x + y - z = 3 Find all the eigen values and the corresponding eigen vectors for the matrix.	(05 Marks)
		$\mathbf{A} = \begin{bmatrix} 7 & 2 & 0 \\ -2 & 6 & -2 \\ 0 & -2 & 5 \end{bmatrix}.$	(06 Marks)
2	a. b.	Reduce the matrix to echelon form and find the rank of the matrix. $A = \begin{bmatrix} 0 & 2 & 3 & 4 \\ 2 & 3 & 5 & 4 \\ 4 & 8 & 13 & 12 \end{bmatrix}.$ Solve the following system of equations by Gauss elimination method: $x_1 - 2x_2 + 3x_3 = 2$	(05 Marks)
		$3x_1 - x_2 + 4x_3 = 4$ $2x_1 + x_2 - 2x_2 = 5$	
	0	$V_{1} = \begin{bmatrix} 1 & 2 \end{bmatrix}$	(05 Marks)
	C.	Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 2 & -1 \end{bmatrix}$ Find A^{-1} .	(06 Marks)
		Module-2	
3	a.	Solve $\frac{d^2y}{dx^2} - 4y = \cosh(2x - 1) + 3^x$.	(06 Marks)
	b.	Solve $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0$ given that $y = 0$, $\frac{dy}{dx} = -1$ at $x = 1$.	(05 Marks)
	C.	Solve by the method of undetermined coefficient $\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + 2y = 4e^{3x}$.	(05 Marks)
4	a.	Solve $\frac{d^2y}{dx^2} + 5\frac{dy}{dx} + 6y = e^x$.	(05 Marks)
	b.	Solve $\frac{d^2y}{dx^2} - 4\frac{dy}{dx} + 5y = 0$ subject to, $\frac{dy}{dx} = 2$, $y = 1$ at $x = 0$.	(05 Marks)

c. Solve by the method of variation of parameters $y'' + a^2y = secax$. (06 Marks) 1 of 2

Module-3

15MATDIP41

a. Find: L{t sin at}
(05 Marks)
b. Given
$$f(t) = \begin{cases} E & 0 < t < a/2 \\ -E & a/2 < t < a \end{cases}$$
 where $f(t + a) = f(a)$. Show that $L\{f(t)\} = \frac{E}{S} \tanh\left(\frac{as}{4}\right)$.
(06 Marks)
(05 Marks)
(05 Marks)
(05 Marks)
(05 Marks)
b. Prove that $L(\sin at) = \frac{a}{s^2 + a^2}$.
(05 Marks)
b. Prove that $L(\sin at) = \frac{a}{s^2 + a^2}$.
(05 Marks)
c. Express the following function in terms of the unit step function and hence find their Laplace transform:
 $f(t) = \begin{cases} \sin t & 0 < t \le \pi/2 \\ \cos t & t > \pi/2 \end{cases}$ (06 Marks)
a. Find the inverse Laplace transform of $\frac{1}{(s+1)(s+2)(s+3)}$.
(05 Marks)

b. Find $L^{-1}\left\{\log\left(1+\frac{a^2}{s^2}\right)\right\}$.

5

6

7

c. Solve the differential equation y'' - 3y' + 2y = 0, y(0) = 0, y'(0) = 1 by Laplace transform techniques. (06 Marks)

OR

- 8 a. Find $L^{-1}\left\{\frac{s+5}{s^2-6s+13}\right\}$.
 - b. Find $L^{-1} \{ \cot^{-1}(s/a) \}$.

Prove that

10 a.

c. Solve, $y'' + a^2y = sint$ with y(0) = 0, y'(0) = 0. Using Laplace transform.

Module-5

- 9 a. The probability that 3 students A, B, C solve a problem are 1/2, 1/3, 1/4 respectively. If the problem is simultaneously assigned to all of them, what is the probability that the problem is solved?
 (05 Marks)
 - b. The probability that a team wins a match is 3/5. If this team play 3 matches in a tournament, what is the probability that the team i) win all the matches ii) loose all the matches.
 - c. State and prove Baye's theorem.

OR

 $P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C).$

(06 Marks)

(05 Marks)

(06 Marks)

(05 Marks)

(05 Marks)

(05 Marks)

(06 Marks)

- b. A box contains 3 white, 5 black and 6 red balls. If a ball is drawn at random. What is the probability that it is entire red or white? (05 Marks)
- c. In a bolt factory there are four machines A, B, C, D manufacturing respectively 20%, 15%, 25%, 40% of the total production. Out of these 5%, 4%, 3%, 2% are defective. If a bolt drawn random was found defective what is the probability that it was manufactured by A.

(05 Marks)

2 of 2